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Abstract

We document the first specimen of a dipsadid snake from the Anguilla Cays, Cay Sal Bank, The Bahamas. We analyze
3,426 base pairs (bp) of sequence data derived from five mitochondrial loci and one nuclear locus using Maximum Like-
lihood (ML) and Bayesian Inference (BI) methods. Our molecular data agree with some aspects of morphology (e.g., scale
counts, dentition, and color pattern) supporting identification of this specimen as the Cuban Racer, Cubophis canther-
igerus cantherigerus (Bibron 1840), a species previously regarded as endemic to Cuba. This discovery provides another
example of the strong Cuban affinities of the terrestrial vertebrate fauna of Bahamian islands.
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Introduction

Dipsadidae is one of the largest families of snakes, consisting of approximately 754 species primarily found in the
Neotropical region (Uetz & Hosek 2015). The subfamily Xenodontinae is exclusive to South America northward to
Mexico, and the West Indies, and highly diverse in both morphology and natural history (Cadle & Greene 1993,
Vidal et al. 2000; Sheehy 2012). The Tribe Alsophiini comprises about 43 species restricted to the West Indies.
Alsophiine snakes are typically slender, fast-moving, and active diurnal foragers (Hedges et al. 2009). While
taxonomic classifications of xenodontines were historically based on hemipenial, dentition, external morphology,
and color pattern (Cope 1893, Dunn 1928, Maglio 1970, Zaher et al. 2009), recent molecular analyses of
Alsophiini are not necessarily in agreement regarding monophyly of the group (Hedges et al. 2009; Zaher et al.
2009; Burbrink et al. 2012; Grazziotin et al. 2012; Pyron et al. 2013).

In 2012, we collected the first known dipsadid snake on the Cay Sal Bank, The Bahamas. Only two snake
species have been previously recorded from any island on the Cay Sal Bank: the Bahamian Slender Blindsnake,
Typhlops biminiensis Richmond 1955, on Elbow Cay; and the Northern Bahamas Trope, Tropidophis curtus
(Garman 1887), on both Elbow Cay and Double Headed Shot Cay (Buden & Schwartz 1968; Buckner et al. 2012).
In this paper, we examine the external morphology, dentition, and color pattern, and conduct molecular analyses of
Caribbean Alsophiine snakes to determine species identity and phylogenetic placement of our Cay Sal Bank
specimen.

Material and methods

Site of study. On 28 May 2012, during nest surveys for Audubon’s Shearwater, Puffinus lherminieri (Lesson
1839), on the Anguilla Cays, Cay Sal (pronounced “Key Sal”) Bank, The Bahamas, a dipsadid snake was observed
at 22:00 h along an expansive plateau with sparse vegetation and weathered karst rock. This site (23.56927°N
79.58675°W, datum WGS84, 1 m above sea level) lies approximately 72 km NE of Cuba, 162 km SW of Andros,
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and 183 km SE of the Florida Keys (Fig. 1). The Cay Sal Bank is isolated from the Great Bahama Bank and the
Little Bahama Bank by the Santaren Channel, and from Cuba by the Nicholas Channel, meaning that it is equally
isolated from both adjacent regions and could reasonably contain either predominant dipsadid species in Cuba [i.e.,
Cubophis cantherigerus (Bibron 1840)] or The Bahamas [i.e., C. vudii (Cope 1862)]. The Cay Sal Bank (Fig. 2)
has an atoll-like structure with six relatively large islands (29-150 ha) and hundreds of smaller exposed islets and
rocks lying at the margin of a shallow (9-16 m) lagoon (Goldberg 1983). The remote, uninhabited islands of the
Cay Sal Bank are perhaps in a more natural condition than anywhere else in the Bahamian region.
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FIGURE 1. Map of Cuba and The Bahamas, illustrating the location of the Cay Sal Bank and known localities of the
predominant dipsadid species Cuban Racer, Cubophis cantherigerus (solid triangles) and Bahamian Racer, Cubophis vudii
(solid circles), modified after Schwartz and Henderson 1991.

Field and laboratory techniques. The Anguilla Cays snake specimen weighed 585 g, was photographed in
the field, and brought to the Rand Nature Centre on Grand Bahama, where it was held in captivity until export
permits were secured. The individual and selected digital images were deposited as vouchers in the Florida
Museum of Natural History, University of Florida Herpetology collection (UF-Herpetology 168557). Because our
Cay Sal Bank specimen phenotypically resembled the Cuban Racer, Cubophis cantherigerus, we also obtained
available tissues from three other known Cuban specimens [two C. cantherigerus adspersus (Gundlach & Peters
1864)] and one C. cantherigerus cantherigerus) for comparisons in our phylogenetic analyses (Table 1). Note that
the C. cantherigerus cantherigerus specimen (MCZ 186206) was originally labeled as Alsophis cantherigerus
caymanus (Garman 1887), however this taxon is apparently endemic to the Cayman Islands (i.e., C. caymanus;
Hedges et al. 2009). According to the locality data for this specimen (Matanzas Province, Cuba) along with our
molecular data (see below), we re-identify this specimen as C. cantherigerus cantherigerus.

We determined sex through a ventral incision at the base of tail in order to check for presence or absence of the
hemipenis. We measured snout-vent length (SVL) and tail length (TL) with a flexible ruler to the nearest 1 mm. We
counted dentition of the dentary, maxillary, palatine, and pterygoid. We counted traditional meristic characters for
colubroid snakes and take into account the dorsal and ventral color patterns. We follow Peters (1964) for
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terminology of the cephalic shields. We compared all these data to those found in the literature (Maglio 1970,
Schwartz & Henderson 1991).
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FIGURE 2. Map of the Cay Sal Bank.

DNA isolations were obtained using ZR Genomic DNA™ Tissue Microprep Kit (Zymo Research, LLC).
Using total cellular DNA as a template and polymerase chain reaction (PCR) methodology (Saiki er al. 1988),
DNA was amplified and sequenced for mitochondrial (mtDNA) 12S, 16S, cytochrome b (cyt b), nicotinamide
adenine dinucleotide dehydrogenase subunit 2 (ND2), the ND4 region (ND4), and the single copy nuclear
(scnDNA) recombination activating gene 2 (RAG2) following Hedges et al. (2009) (see Table 2 for primers). PCR
was conducted in 25 pl reactions: 9.5 ul H,0, 12.5 pl GoTaq® Master Mix (Promega Corp, Madison, Wisconsin,
USA), 1.0 pl each primer (10 pM), and 1.0 pl DNA template. PCR parameters for mtDNA included initial
denaturing at 94°C for 3 min, followed by 35 cycles of amplification: denaturing at 94°C for 1 min, annealing at
52°C for 1 min, and extension at 72°C for 1 min, followed by a final extension at 72°C for 7 min. PCR parameters
for scnDNA included initial denaturing at 94°C for 5 min, followed by 35 cycles of amplification: denaturing at
94°C for 30 sec, annealing at 50°C for 40 sec, and extension at 68°C for 3 min; followed by a final extension at
68°C for 5 min. Three pl of each PCR product were electrophoresed on a 1% agarose gel, visualized with GelRed™
staining (Biotium Inc., Hayward, California, USA), and compared with a DNA standard. Sequence files from the
automated sequencer (Genomics Division, Interdisciplinary Center for Biotechnology Research, University of
Florida) were assembled using the Muscle algorithm and manually edited as necessary with Geneious 6.1 (created
by Biomatters. Available from http://www.geneious.com). GenBank Accession numbers for our sequenced
specimens are listed in Table 1.
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TABLE 2. Primers (5’3’ direction) used to sequence 12S ribosomal (12S), 16S ribosomal (16S), cytochrome b (cyt b),
nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2), nicotinamide adenine dinucleotide dehydrogenase
subunit 4 (ND4) region, and recombination activating gene 2 (RAG2) regions in Cubophis specimens.

Gene DNA Marker Primer Name Primer Sequence Source

Region

128 rRNA L12 CGC-CAA-AYA-ACT-ACG-AG Vidal et al. (2000)

128 rRNA H1557 GTA-CAC-TTA-CCT-TGT-TAC-GAC-TT Knight & Mindell (1994)
16S rRNA L16 ACG-GCC-GCG-GTA-YCC-TAA-CCG-TG Vidal et al. (2000)

16S rRNA H3056 CTC-CGG-TCT-GAA-CTC-AGA-TCA-CGT-AGG Hedges (1994)

Cytb mtDNA L14910 GAC-CTG-TGA-TMT-GAA-AAC-CAY-CGT-TGT Burbrink et al. (2000)
Cyth mtDNA H16064 CTT-TGG-TTT-ACA-AGA-ACA-ATG-CTT-TA Burbrink et al. (2000)
ND2 mtDNA L4437b CAG-CTA-AAA-AAG-CTA-TCG-GGC-CCA-TAC-C Kumazawa et al. (1996)
ND2 mtDNA tRNA-trpR ~ GGC-TTT-GAA-GGC-TMC-TAG-TTT de Queiroz et al. (2002)
ND4 mtDNA ND4 TGA-CTA-CCA-AAA-GCT-CAT-GTA-GAA-GC Forstner et al. (1995)
ND4 mtDNA Leu TAC-TTT-TAC-TTG-GAT-TTG-CAC-CA Forstner et al. (1995)
RAG2 nDNA L562 CCT-RAD-GCC-AGA-TAT-GGY-CAT-AC Vidal & Hedges 2005
RAG2 nDNA H1306, GHG-AAY-TCC-TCT-GAR-TCT-TC Vidal & Hedges 2005
RAG2 nDNA L63 GGT-TCA-ATC-TTC-AAG-CCA-AGG This Study

RAG2 nDNA H705 CAT-GAC-GAA-CTG-CAA-ACT-CG This Study

Phylogenetic analyses. DNA sequence data for each of the six genes were downloaded from GenBank for 36
West Indian dipsadid snakes and eight outgroups [Helicops angulatus (Linnaeus 1758), Hel. infrataeniatus Jan
1865, Heterodon nasicus Baird & Girard 1852, Het. platirhinos Latreille 1801, Het. simus (Linnaeus 1766),
Leptodeira annulata (Linnaeus 1758), Xenochrophis flavipunctatus (Hallowell 1860), and X. trianguligerus (Boie
1827)], incorporating the original data matrix and revised taxonomy and nomenclature of Hedges et al. (2009).
Roure et al. (2012) demonstrated that missing data could be informative in a probabilistic framework; however it
could also exacerbate systemic errors in the model due to the decreased number of species. Because a considerable
amount of sequence data (i.e., entire genes) were missing in this original data set from one ingroup taxon
[Haitiophis anomalus (Peters 1863); missing cyt b, ND2, ND4, and RAG2] and seven of the eight outgroup taxa
(Table 1), we created and analyzed two different data matrices. The first data set included all original samples (n =
48, including our four new terminals), regardless if they were missing data or not. The second data set included
only samples that contained sequence data for all five mtDNA genes [Cubophis fuscicauda (Garman 1888) and C.
ruttyi (Grant 1941) were missing only RAG2] and used Leptodeira annulata as the sole outgroup (n = 41).

A total of 3,426 base pairs (bp) of sequence data were analyzed, including 299 bp for 12S, 385 bp for 16S, 608
bp for cyt b, 745 bp for ND2, 675 bp for ND4, and 714 bp for RAG2. Relationships among haplotypes were
estimated using both Maximum Likelihood (ML) and Bayesian Inference (BI) methods. ML was conducted with
the General Time Reversible model with gamma distributed rate heterogeneity (GTR +I') and 1000 nonparametric
bootstrap replicates (Felsenstein 1985) to assess node support using RAXML-HPC BlackBox (Stamatakis 2006;
Stamatakis et a/. 2008) from the CIPRES Science Gateway (Miller et al. 2010).

BI was conducted using BEAST 1.8 (Drummond & Rambaut 2007) from the UF-HPC Galaxy instance (http://
hpc.ufl.edu; Giardine et al. 2005; Blankenberg et al. 2010; Goecks et al. 2010). To infer trees and assess nodal
support using models incorporating evolutionary information specific to each gene, a mixed-model analysis was
performed. The Bayesian Information Criterion (BIC) in jModelTest 2.1.4 (Guindon & Gascuel 2003; Darriba et
al. 2012) determined the best-fit nucleotide substitution models to be Hasegawa, Kishino and Yano with gamma
distributed rate heterogeneity (HKY + I') for 12S, GTR with gamma distributed rate heterogeneity and proportion
of invariant sites (GTR+I+ I') for 16S and ND2, HKY+I+I" for cyt » and ND4, and HKY+ I" for RAG2. A relaxed
phylogenetics method was used without having to rely on a potential arbitrary molecular clock (Zuckerkandl &
Pauling 1965) that might incorporate uncertainty in the tree estimation process (Drummond et al. 2006). An
uncorrelated lognormal relaxed clock, yule speciation process (a special case of the birth-death process [ Yule 1925,
Gernhard 2008, also see Burbrink ef al. 2012]), estimated base frequencies, randomly generated starting tree, and
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exponential relaxed clock mean (ucld.mean) priors were used. Two independent runs were performed consisting of
three heated and one cold Markov chain Monte Carlo (MCMC) estimated for 30 million generations, with every
1000™ sample being retained. Both MCMC runs were analyzed independently (to confirm chains were converging
and not sampling local optima) using Tracer 1.6 for ESS values >200, as well as for a split standard deviation less
than 0.005 for -InL tree values among chains that indicate parameter stationarity was achieved. Trees sampled prior
to stationarity were discarded as burn-in, which occurred prior to 5 million generations. Trees from both
independent MCMC runs were combined and burn-in was removed using LogCombiner 1.8. The best statistically
supported tree (i.e., Maximum clade credibility tree) with mean heights was obtained using TreeAnnotator 1.8, and
a phylogenetic hypothesis with posterior probabilities was created using FigTree 1.4.2.

The most credible inferences of phylogenetic relationships were confined to nodes where nonparametric
bootstrap values >70% and posterior probability (Pp) was >95% (Hillis & Bull 1993, Felsenstein 2004).

Results

The ML and BI methods analyzing all samples (n = 48) produced similar tree topologies (except for the addition of
our four new terminal samples, and the position of the outgroup taxon Xenochrophis flavipunctatus was sister to
the ingroup genus Uromacer in the ML analysis) to that found in the ML and BI analyses by Hedges et al. (2009).
The trimmed data set (» = 41) produced similar phylogenies with either the ML or BI method, although an
unsupported clade with Magliophis was incorporated as the sister group to the entire remaining ingroup in the ML
analysis.

Because considerable data were missing from the data set (» = 48) and because we obtained the same
phylogenetic tree topology as Hedges et al. (2009), we illustrate only the trimmed (# = 41) ML and BI phylogenies
(Figs. 3—4). All of our analyses suggest that our Cay Sal Bank specimen is most closely related to the Cuban Racer,
Cubophis c. cantherigerus. Morphological data for this Cay Sal Bank specimen are as follows: an adult male; SVL
1111 mm; TL 177 mm + n (terminal tail amputated); ventrals 178, subcaudals 37 + n, supralabials 8/8, infralabials
10/10, preoculars 1/1, postoculars 2/2, temporals 1+2/1+2, and loreals 1/1. All of these data are consistent with
those for C. c. cantherigerus according to last taxonomic review provided by Schwartz & Henderson (1991). In
addition, the dentition data for the Cay Sal Bank specimen are as follows: maxillary 12+2, palatine 10, pterygoid
26, and dentary 19. According to Maglio (1970) these data are consistent with C. cantherigerus, but diagnosable
from nearby C. vudii (with 24 pterygoid and 21 dentary teeth) (Fig. 1). Furthermore, the color pattern is between
patterns 3 and 4 of Schwartz and Henderson (1991:569) in these characters: a black crown cap present on parietals
but reduced on supraoculars and frontal; dorsum without banding; venter bicolored; and each scale light colored
anteriorly with dark free edges (also see Lando & Williams 1969). Lastly, both of our molecular analyses place two
of our new terminal samples (C. c. adspersus) as more closely related to C. caymanus.

Discussion

Our molecular analyses are nearly identical to the phylogenetic hypothesis presented by Hedges et al. (2009), with
all taxa yielding monophyletic groups. We note that our trimmed data set (» = 41) in the ML analysis place
Magliophis as sister to the entire ingroup (Fig. 3), whereas our Bl analysis place Magliophis sister to Alsophis (also
see Hedges et al. 2009; Lemmon et al. 2009; Grazziotin et al. 2012; Pyron et al. 2013 regarding the effects of using
different outgroups and missing data). Because these two different types of commonly used analyses yield such
differences in tree topology of certain taxa, the phylogenetic position of Magliophis warrants more study.

Our molecular and morphological data support our Cay Sal Bank specimen as Cubophis cantherigerus
cantherigerus. This is the first record of this species from The Bahamas (Buckner ez al. 2012), and this species was
previously believed to be endemic to Cuba (Powell & Henderson 2012). We consider this species to be native on
the Cay Sal Bank because our specimen is most closely related to another C. c. cantherigerus with the known
locality of Matanzas Province, Cuba, which is the closest land to the Cay Sal Bank. Additionally, both of our
analyses place the two new terminal samples of C. ¢. adspersus from Guantanamo Bay in eastern Cuba as more
closely related to C. caymanus from the Cayman Islands than they are to C. c¢. cantherigerus from Matanzas
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Province in western Cuba. It is interesting to note that all three of these taxa were recently treated as subspecies of
C. cantherigerus, thus our data suggest that they might be different species. Glor e al. (2005) found this same
biogeographic pattern; eastern Cuban Anolis porcatus (Gray 1840) is more closely related to 4. maynardi (Garman
1888) from Little Cayman Island than it is to western Cuban A. porcatus populations.
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FIGURE 3. Maximum Likelihood phylogeny for West Indian dipsadid (Xenodontinae: Alsophiini) snakes, including only
known specimen (UF-Herpetology 168557) from the Cay Sal Bank, The Bahamas (highlighted in yellow). Note that values (>
70%) above major nodes represent bootstrap support. Photograph (in situ) of Cay Sal Bank specimen by Lisa Ferguson.
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FIGURE 4. Bayesian Inference phylogeny for West Indian dipsadid (Xenodontinae: Alsophiini) snakes, including only known
specimen (UF-Herpetology 168557) from the Cay Sal Bank, The Bahamas (highlighted in yellow). Note that the values (>
95%) above major nodes represent posterior probabilities. Photograph (in situ) of Cay Sal Bank specimen by Lisa Ferguson.
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Islands of the Cay Sal Bank are rarely visited by scientists. We are aware of only biological surveys for marine
plants and invertebrates (Agassiz 1894; Wilson 1909; Goldberg 1983), terrestrial vegetation (Wilson 1909; Gillis
1976), birds (Buden 1987), nesting marine turtles (Addison & Morford 1996), and other reptiles (Barbour &
Shreve 1935). Documentation of terrestrial reptiles has been limited to visits by Bartsch for Anolis fairchildi
(Barbour & Shreve 1935) on Cay Sal and Cotton Cay in 1930 (Barbour & Shreve 1935) and Buden in 1968 (Buden
& Schwartz 1968). The Cay Sal Bank, because of its long history of isolation, human absence, and lack of
freshwater, differs from most other Bahamian islands in not sustaining established populations of non-native plants
or vertebrates (Lee 2005).

Many other living and extinct species of terrestrial vertebrates are shared uniquely between The Bahamas and
Cuba (or Cuba + Cayman Islands). These shared species include amphibians such as the Cuban Treefrog,
Osteopilus septentrionalis (Duméril & Bibron 1841), reptiles such as the Cuban Brown Anole, Anolis sagrei
(Duméril & Bibron 1835), and Cuban Crocodile, Crocodylus rhombifer (Cuvier 1807), and birds such as the Cuban
Emerald, Chlorostilbon ricordii (Gervaise 1835), West Indian Woodpecker, Melanerpes superciliaris (Temminck
1827), Cuban Crow, Corvus nasicus (Temminck 1827), Olive-capped Warbler, Setophaga (Dendroica) pityophila
(Gundlach 1855), and the extinct Creighton’s Caracara, Caracara creightoni (Brodkorb 1959) (Pregill 1982; Franz
et al. 1995; Raffaele er al. 1998; Suarez & Olson 2001; Steadman et al. 2007; Powell & Henderson 2012; Morgan
& Albury 2013). As we further explore the living and fossil fauna of The Bahamas, we expect to find more
examples that conform to this biogeographic pattern.
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