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Ancient DNA of extinct species from the Pleistocene and Holocene has provided

valuable evolutionary insights. However, these are largely restricted to mam-

mals and high latitudes because DNA preservation in warm climates is

typically poor. In the tropics and subtropics, non-avian reptiles constitute a sig-

nificant part of the fauna and little is known about the genetics of the many

extinct reptiles from tropical islands. We have reconstructed the near-complete

mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis
alburyorum) using an approximately 1 000-year-old humerus from a water-filled

sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock

analyses place this extinct species as closely related to Galápagos (C. niger
complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated

overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis
species arrived in South America from Africa only after the opening of the

Atlantic Ocean and dispersed from there to the Caribbean and the Galápagos

Islands. Our results also suggest that the anoxic, thermally buffered environment

of blue holes may enhance DNA preservation, and thus are opening a window

for better understanding evolution and population history of extinct tropical

species, which would likely still exist without human impact.
1. Introduction
Post-mortem degradation of DNA is climate dependent, being greatly accelerated

in warm tropical and subtropical regions [1,2]. As a result, extinct Late Pleistocene

megafauna from cold climates has been widely studied using ancient DNA

(aDNA) approaches [3], providing valuable insights in ecology, evolution, and

biogeography, and causes of extinction of vanished species. By contrast, aDNA

from tropical and subtropical environments remains largely unexplored, apart

from some notable exceptions [4–8]. A further consequence is that aDNA studies

are biased toward taxa that are abundant at higher latitudes, in particular,

mammals. Other groups, such as non-avian reptiles, which are highly diverse

in warm climates, remain little studied [9–13]. Subtropical and tropical islands

are systems that would benefit greatly from information from aDNA because

they have experienced substantial losses of both megafauna and small-bodied

species after the Holocene arrival of humans [14–16]. The Bahamas are one

such example, with much of the original vertebrate fauna (reptiles, birds, and

mammals) having disappeared within a few centuries after the arrival of

human settlers about 1 000 years before present (BP) [17].

Among the extinct Bahamian species is an endemic giant tortoise, Chelonoidis
alburyorum, which is believed to have gone extinct around 780 BP [18]. Complete
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tortoise fossils, with a shell length of up to 47 cm, have been

discovered in Sawmill Sink, a deep inland blue hole and cave

system, on Great Abaco Island in the northern Bahamas [19].

The fossils were retrieved from anoxic saltwater, and were

found to contain substantial collagen [20], suggesting at least

the potential for DNA preservation. Although samples from

temperate saltwater deposits have yielded endogenous DNA

[21,22], the validity of a recent report on aDNA from a Mexican

underwater cave [23] has been questioned [24]. Thus, the pres-

ervation potential of DNA in tropical aquatic or water-logged

environments is poorly understood. In this study, we have

analysed aDNA from an almost 1 000-year-old subfossil

humerus of C. alburyorum from Sawmill Sink. Although

DNA preservation in the sample is poor, we have recovered

an almost complete mitochondrial genome sequence from

the sample, which provides new insights into the origin and

relationships of this enigmatic giant tortoise and contributes

to a better understanding of the biogeography of the Bahamas.
162235
2. Material and methods
(a) Studied specimens
The following specimens from the collections of the National

Museum of The Bahamas, Marsh Harbour, Bahamas (NMB) and

the Museum of Zoology, Senckenberg Dresden, Germany (MTD)

were studied: C. alburyorum, subfossil humerus of specimen

NMB.AB50.0008 (Sawmill Sink, Abaco Island, Bahamas);

C. carbonarius, fresh tissue sample MTD-T 5138 (Iracoubo, French

Guiana); C. chilensis, fresh tissue sample MTD-T 5754

(240.787778, 265.316389, Rı́o Negro Province, Argentina); C. den-
ticulatus, fresh tissue sample MTD-T 7255 (from pet trade); C. vicina
(‘Poldi’ kept at Reptile Zoo Happ, Klagenfurt, Austria), blood

sample MTD-T 14174; Geochelone sulcata, fresh tissue sample

MTD-T 872 (captive bred).

(b) Processing of the ancient sample
All stages of sample processing prior to polymerase chain reaction

(PCR) amplification were carried out in dedicated aDNA facilities

at the University of Potsdam, following established guidelines [25].

Negative controls (water blanks) were included during DNA

extraction and library preparation and screened for evidence of

contamination. Two 50 mg bone powder samples were obtained

from the C. alburyorum humerus. DNA was extracted from each

sample using a published protocol optimized for the recovery of

short aDNA fragments [26]. DNA extracts were treated with

uracil-DNA glycosylase (UDG) to remove uracil residues probably

resulting from DNA damage and then converted into Illumina

sequencing libraries using a protocol based on single-stranded

DNA [27]. An initial assessment of DNA preservation and con-

tamination was made by low-level shotgun sequencing of the

libraries on an Illumina NextSeq 500 sequencing platform generat-

ing 75 bp paired-end reads. Owing to low abundance of

endogenous DNA fragments in the sequencing libraries, we per-

formed two-rounds of in-solution hybridization capture to

enrich for mitochondrial DNA fragments [28,29], using DNA

baits generated from long-range PCR products of the congeneric

species C. chilensis (see below). Sequencing of enriched libraries

was as described above.

(c) Processing of modern samples
DNA of extant relatives of C. alburyorum was extracted using

commercial kits (Analytik Jena AG, Jena, Germany), and

served as template for amplicon sequencing (C. chilensis,

C. vicina, and G. sulcata), or in-solution hybridization capture

enrichment (C. carbonarius and C. denticulatus), depending on
DNA quality. Amplicon sequencing involved PCR amplification

of mitogenomes using standard methods (for primer sequences

and PCR conditions see electronic supplementary material,

Amplicon sequencing, and table S1). Amplification products

were sheared and converted into Illumina sequencing libraries

using a published protocol based on double-stranded DNA

[30] with modifications [31]. Hybridization capture enrichment

of degraded samples followed the procedures described pre-

viously for the ancient sample. All modern sample libraries

were sequenced on an Illumina NextSeq 500 sequencing platform

generating 150 bp paired-end reads.

(d) Assessment of endogenous and contaminant DNA
content

Prior to analysis, adapter sequences were trimmed from the 30 read

ends, overlapping paired-end reads were merged, and any merged

reads less than 20 bp discarded, using the program SeqPrep [32].

Analysis of shotgun data from the ancient C. alburyorum sample

involved estimation of endogenous DNA content by calculating

the proportion of sequence reads that could be mapped to the refer-

ence nuclear genome assembly of the painted turtle (Chrysemys picta
bellii) [33] using bwa [34] with a mismatch value of 0.001. Reads

with low mapping quality (less than 30) and likely PCR duplicates

were removed from the alignment using SAMtools [35]. Cow, dog,

cat, human, and mouse were then investigated as potential sources

of contamination using fastqscreen [36]. To assess the authenticity

of the ancient reads obtained, the shotgun data as well as the

assembled reads from the enriched libraries were re-mapped to

the reference nuclear genome assembly of Ch. picta and the newly

generated mitogenome of C. alburyorum, respectively, in order to

generate nucleotide misincorporation plots using mapDamage 2.0

[37]. Finally, we estimated the preservation of DNA in a bone

sample deposited in the terrestrial environment of the Bahamas at

25.048298 latitude and 277.4328488 longitude and buried under a

20 m layer of silt-loam soil using the online resource http://ther-

mal-age.eu (Job 1337), for comparison to the empirical data

obtained from the C. alburyorum sample.

(e) Assembly of mitogenome sequences
Assembly of mitogenome sequences from the enriched and ampli-

con libraries involved a two-step baiting and iterative mapping

approach in MITObim [38]. Prior to assembly, duplicate read

pairs were removed from each dataset using FastUniq [39] and

the order of the remaining unique reads randomized using fastq-

sort [36]. Only reads more than 31 bp were used for assembly,

which corresponded to the k-mer size used for baiting. Various

levels of coverage and mapping stringency were tested and optimal

values selected based on visual assessment of the final alignments

in Tablet v. 1.15.09.1 [40]. After assembly, PCR priming sites were

removed from amplicon assemblies. Mitogenome annotation was

performed using MITOS [41].
( f ) Phylogenetic analyses and molecular dating
Novel sequences were aligned with all Testudinidae mitochondrial

genomes available on GenBank, plus representatives of the turtle

genera Mauremys and Emys as outgroups (electronic supplemen-

tary material, Mitochondrial genomes from GenBank used for

phylogenetic analyses), using the ClustalW algorithm [42] with

default settings, resulting in 22 485 aligned positions. Alternative

data partitioning schemes were compared using the software

PartitionFinder [43] using the Bayesian Information Criterion (BIC).

Phylogenetic analysis using Bayesian Inference was con-

ducted with MrBayes 3.2.1 [44] and optimal models selected by

PartitionFinder (electronic supplementary material, table S2),

with two parallel runs (each with four chains) and default

parameters. Parameter convergence, sampling adequacy, and
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appropriate burn-in was determined using the software Tracer 1.6

[45]. A 50% majority rule consensus tree was then generated from

the posterior sample of trees. Phylogenetic analysis was addition-

ally conducted under Maximum Likelihood using RAxML 7.2.8

[46] and the GTR þ G substitution model. Clade support was

assessed by bootstrap analysis, involving multiple independent

runs using both fast and thorough bootstrap algorithms.

Molecular dating was conducted with BEAST 1.8.2 [47]. Two

calibration points were specified using normally distributed priors.

Based on the fossil species C. hesternus from the middle Miocene

La Venta Fauna of Colombia, thought to be close to the last

common ancestor of C. carbonarius and C. denticulatus [48], the split

between these two species was identified with La Ventan age,

13.5–11.8 million years ago (mya) [49,50]. Accordingly, the node

age was set to a mean of 12.55 mya with a standard deviation of

0.6. The Geoemydidae (Mauremys) þ Testudinidae node was dated

to 50.3–66.99 mya, based on the fossil tortoise species Hadrianus
majusculus [51], using a mean of 58.65 mya and a standard deviation

of 5.08. Analyses involved the HKY substitution model, estimated

base frequencies, an uncorrelated lognormal relaxed molecular

clock, and the Yule tree prior. MCMC chains were inspected as

described above, and the maximum clade credibility tree was

extracted using TreeAnnotator and viewed in FigTree 1.4.2 [52].
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3. Results
(a) DNA preservation of the Chelonoidis alburyorum

sample
Analysis of the C. alburyorum shotgun data indicated high

levels of degradation and contamination (electronic sup-

plementary material, figure S1). Only 1.4% of reads could be

mapped to the Ch. picta reference genome, although this is

almost certainly an underestimate of endogenous DNA content

due to the considerable evolutionary divergence of Ch. picta
from C. alburyorum (approx. 86 mya) [51]. To corroborate the

presence of ancient endogenous DNA molecules, misincor-

poration plots were generated for the 24 362 reads resulting

from shotgun sequencing that mapped against the full

genome of Ch. picta (electronic supplementary material,

figure S1a), as well as for 25 913 captured reads of C. alburyorum
that re-mapped to the assembled mitochondrial genome (elec-

tronic supplementary material, figure S1b). The observed C to T

substitutions increase towards the ends of the fragments,

which is consistent with the expectation for aDNA fragments

[53,54]. The relatively low misincorporation rates for the re-

mapped mitochondrial reads can be attributed to the use of

UDG during library preparation, which removes the majority

of deaminated cytosines. Overall, this result validates the

ancient origin of the C. alburyorum mitogenome.

Contamination analysis using fastqscreen revealed mul-

tiple potential sources of contamination, in particular, human

(electronic supplementary material, figure S1c). Yet, more

reads could be uniquely assigned to the Chrysemys genome

than to any of the alternative genomes tested. Predicted DNA

preservation for a bone sample deposited in a terrestrial

environment of the Bahamas indicated a mean fragment

length of just 24 bp, and a probability of 0.012 for the survival

of an intact 100 bp fragment (electronic supplementary

material, figure S1d). However, DNA preservation appears to

be substantially better in the C. alburyorum sample; the mean

length of recovered mitochondrial fragments is 65 bp and

7.88% of recovered fragments are at least 100 bp long (elec-

tronic supplementary material, figure S1e).
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(b) Mitochondrial phylogeny of Chelonoidis
The assembly of the C. alburyorum mitogenome comprised 19

929 reads, resulting in an average 85-fold read-depth and

included the nearly complete mtDNA gene and tRNA comp-

lement, covering 15 328 bp and ranging from 12S to cyt b, but

lacking the control region. Assemblies of modern relatives were

all of a similar standard (table 1). Read information of sequenced

voucher specimens, including European Nucleotide Archive

(ENA) accession numbers and sequenced blanks, can be found

in the electronic supplementary material, tables S3 and S4.

Phylogenetic analyses unambiguously placed C. alburyorum
in a clade together with C. chilensis and C. vicina (figure 1; elec-

tronic supplementary material, figure S2), with the latter two

suggested as weakly supported sister taxa. C. carbonarius and

C. denticulatus together constituted the sister clade to the pre-

vious three taxa. The relationships of the remaining testudinid

species corresponded to expectations from previous papers

based on less sequence data [55,56]. According to our molecular

clock calculations, C. alburyorum diverged from the last

common ancestor of C. chilensis and the Galápagos tortoises

(represented by C. vicina) about 15.5 mya, whereas C. chilensis
and C. vicina diverged approximately 12 mya, similar to

C. carbonarius and C. denticulatus (figure 1).
4. Discussion
(a) Biogeography of Chelonoidis
Despite advanced DNA degradation and high levels of

contamination, we successfully recovered a high-quality
mitogenome from the extinct tropical tortoise C. alburyorum.

Our results both shed new light on the biogeography of

Chelonoidis and have wider implications for aDNA research

on tropical taxa.

Chelonoidis represents a South American radiation, including

the Galápagos and the Caribbean Islands (figure 2; electronic

supplementary material, table S5). All Caribbean species are

extinct. Chelonoidis is most closely related to African tortoises;

fossils of related tortoises are unknown from North America.

Thus, overseas dispersal from Africa has been postulated to

explain its occurrence in South America [55], as in New World

monkeys [57] and rodents [58]. According to our molecular

clock calculations, and in agreement with the oldest record of a

fossil tortoise in South America, the divergence of Chelonoidis
from the African Geochelone sulcata and subsequent dispersal to

South America would have occurred distinctly later than in the

two other groups (Eocene), around the Oligocene–Miocene

transition (figure 1). For the colonization of the Caribbean

islands, two transoceanic routes have to be considered: directly

from South America or via southern Central America. The orig-

inally wide Caribbean distribution of Chelonoidis is indicated by

records of extinct species from 10 Bahamian islands as well as

from Cuba, Hispaniola, Mona, Navassa, Barbados, Curacao,

Grand Turk, Caicos, Anguilla, and Bermuda [19]. The extent to

which Caribbean terrestrial ecosystems have been altered by

the loss of these ‘ecosystem engineers’ is fertile ground for new

research in palaeoecology and restoration ecology [59,60].

With a proposed divergence date of approximately

15.5 mya, this Caribbean island radiation postdates the diver-

gence of South American Chelonoidis from African Geochelone

http://rspb.royalsocietypublishing.org/
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by only approximately 7 mya and predates the divergence of

Galápagos and Chaco tortoises by approximately 3.5 mya.

Owing to human activities during the mid- to late Holocene,

the entire Caribbean tortoise radiation was lost, as was the

case for the sloths that once occupied the Greater Antilles

[61]. This loss of the Caribbean tortoises is another example
of the massive impoverishment of evolutionary diversity

that accompanied human colonization of oceanic islands

worldwide [15,16]. The extent of this depletion only increases

as the insular fossil record continues to grow. Because these

eliminated species and lineages would still exist if not for

human interference, we should endeavour to incorporate

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypu

6

 on January 16, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
them into studies of ‘modern’ biodiversity, including their

genetic diversity. Until aDNA analyses are done on other

Caribbean forms of Chelonoidis, we cannot evaluate, for

example, how many dispersal events from South America

were required to account for the Caribbean radiation of tor-

toises, or how much of the Holocene diversity of Chelonoidis
was lost due to human activity.
blishing.org
Proc.R.Soc.B

284:20162235
(b) Implications for the study of tropical ancient DNA
The recovery of genetic information from tropical and sub-

tropical fossils remains a challenge. A unique property of the

C. alburyorum fossil analysed here is its deposition environment:

the Sawmill Sink blue hole. It is well known that certain micro-

environments can provide conditions that enhance DNA

preservation, e.g. cave environments greatly improve the prob-

ability of DNA survival relative to the external landscape [2].

Marine environments in general are also known to provide

promising potential for DNA preservation, as evidenced by

studies of Late Pleistocene remains retrieved from temperate

oceans [22,62]. Although the estimated endogenous DNA con-

tent and preservation of the C. alburyorum sample is poor, it is

nevertheless sufficient for mitogenome sequencing using

methods optimized for the retrieval of aDNA. Moreover, pres-

ervation in this sample is substantially better than that

predicted for a bone sample deposited for the same time in a ter-

restrial environment of the Bahamas. Although any conclusions

based on this single sample are tentative, we propose that the

anoxic, thermally buffered marine environment of blue holes

and similar preservation contexts may provide conditions that
enhance DNA preservation—even in tropical regions, where

DNA recovery from ancient samples is often considered to be

unachievable. These findings indicate a future direction with

high potential for aDNA research in the tropics.
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Fritz U. 2009 Unexpected early extinction of the
European pond turtle (Emys orbicularis) in Sweden
and climatic impact on its Holocene range. Mol.
Ecol. 18, 1252 – 1262. (doi:10.1111/j.1365-294X.
2009.04096.x)

14. Case TJ, Bolger DT, Richman AD. 1992 Reptilian
extinctions: the last ten thousand years. In
Conservation biology (eds PL Fiedler, SK Jain), pp.
91 – 125. New York, NY: Chapman and Hall.

15. Steadman DW. 2006 Extinction and biogeography of
tropical Pacific birds. Chicago, IL: University of
Chicago Press.

16. Rhodin AGJ et al. 2015 Turtles and tortoises of the
world during the rise and global spread of
humanity: first checklist and review of extinct
Pleistocene and Holocene chelonians. In
Conservation biology of freshwater turtles and
tortoises: a compilation project of the IUCN/SSC
tortoise and freshwater turtle specialist group (eds
AGJ Rhodin, PCH Pritchard, PP Dijk, RA Saumure, KA

http://dx.doi.org/10.5061/dryad.728hn
http://dx.doi.org/10.5061/dryad.728hn
http://dx.doi.org/10.5061/dryad.728hn
http://dx.doi.org/10.1016/S0047-2484(03)00106-4
http://dx.doi.org/10.1016/S0047-2484(03)00106-4
http://dx.doi.org/10.1002/bies.201400160
http://dx.doi.org/10.1038/nature10574
http://dx.doi.org/10.1038/nature10574
http://dx.doi.org/10.1098/rsbl.2014.0224
http://dx.doi.org/10.1098/rsbl.2014.0224
http://dx.doi.org/10.1126/science.aad2879
http://dx.doi.org/10.1126/science.aad2879
http://dx.doi.org/10.1098/rspb.2014.2371
http://dx.doi.org/10.1098/rspb.2014.2371
http://dx.doi.org/10.1093/molbev/msw186
http://dx.doi.org/10.1111/1755-0998.12551
http://dx.doi.org/10.1098/rspb.2001.1825
http://dx.doi.org/10.1016/j.ympev.2005.12.011
http://dx.doi.org/10.1046/j.1365-294X.2003.01842.x
http://dx.doi.org/10.1046/j.1365-294X.2003.01842.x
http://dx.doi.org/10.1016/j.ympev.2003.07.011
http://dx.doi.org/10.1016/j.ympev.2003.07.011
http://dx.doi.org/10.1111/j.1365-294X.2009.04096.x
http://dx.doi.org/10.1111/j.1365-294X.2009.04096.x
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20162235

7

 on January 16, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
Buhlmann, JB Iverson, RA Mittermeier),
pp. 000.e1 – 000.e66. Lunenburg, MA: Chelonian
Research Foundation (Chelonian Research
Monographs No. 5).

17. Steadman DW, Albury NA, Maillis P, Mead JI,
Slapcinsky J, Krysko KL, Singleton HM, Franklin J.
2014 Late-Holocene faunal and landscape change in
the Bahamas. Holocene 24, 220 – 230. (doi:10.1177/
0959683613516819)

18. Hastings AK, Krigbaum J, Steadman DW, Albury NA.
2014 Domination by reptiles in a terrestrial
food web of the Bahamas prior to human
occupation. J. Herpetol. 48, 380 – 388. (doi:10.1670/
13-091R1)

19. Franz R, Franz SE. 2009 A new fossil land tortoise in
the genus Chelonoidis (Testudines: Testudinidae)
from the northern Bahamas, with an osteological
assessment of other neotropical tortoises. Bull.
Florida Mus. Nat. Hist. 49, 1 – 44.

20. Steadman DW et al. 2007 Exceptionally well
preserved late Quaternary plant and vertebrate
fossils from a blue hole on Abaco, The Bahamas.
Proc. Natl Acad. Sci. USA 104, 19 897 – 19 902.
(doi:10.1073/pnas.0709572104)

21. Rohland N, Pollack JL, Nagel D, Beauval C, Airvaux
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24. Prüfer K, Meyer M. 2015 Comment on ‘Late
Pleistocene human skeleton and mtDNA link
Paleoamericans and modern Native Americans’.
Science 347, 835. (doi:10.1126/science.1260617)

25. Fulton TL. 2012 Setting up an ancient DNA
laboratory. In Ancient DNA: methods and protocols.
Methods in molecular biology, vol. 840 (eds B
Shapiro, M Hofreiter), pp. 1 – 11. Berlin, Germany:
Springer.

26. Dabney J et al. 2013 Complete mitochondrial
genome sequence of a Middle Pleistocene cave bear
reconstructed from ultrashort DNA fragments. Proc.
Natl Acad. Sci. USA 110, 15 758 – 15 763. (doi:10.
1073/pnas.1314445110)

27. Gansauge M-T, Meyer M. 2013 Single-stranded DNA
library preparation for the sequencing of ancient or
damaged DNA. Nat. Protoc. 8, 737 – 748. (doi:10.
1038/nprot.2013.038)

28. Maricic T, Whitten M, Pääbo S. 2010 Multiplexed
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